Índice
- 1 Estrutura solar
- 2 Composição química
- 3 Campo magnético
- 4 Ciclo solar
- 5 Evolução
- 6 Luz solar
- 7 Sistema planetário
- 8 Movimento e localização dentro da Via Láctea
- 9 Problemas teóricos
- 10 História de observação
- 11 Observação e efeitos em Terra
- 12 O Sol na cultura humana
- 13 Ver também
- 14 Notas
- 15 Referências
- 16 Leia mais
- 17 Ligações externas
Estrutura solar
Uma ilustração da estrutura do Sol:
1. Núcleo
2. Zona de radiação
3. Zona de convecção
4. Fotosfera
5. Cromosfera
6. Coroa
7. Mancha solar
8. Grânulos
9. Proeminência solar
1. Núcleo
2. Zona de radiação
3. Zona de convecção
4. Fotosfera
5. Cromosfera
6. Coroa
7. Mancha solar
8. Grânulos
9. Proeminência solar
O Sol não possui uma superfície definida como planetas rochosos possuem, e, nas partes exteriores, a densidade dos gases cai aproximadamente exponencialmente à medida que se vai afastando do centro.[35] Mesmo assim, seu interior é bem definido. O raio do Sol é medido do centro solar até o limite da fotosfera. Esta última é simplesmente uma camada acima do qual gases são frios ou pouco densos demais para radiar luz em quantidades significativas, sendo, portanto, a superfície mais facilmente identificável a olho nu.[36]
O interior solar possui três regiões diferentes: o núcleo, onde se produzem as reações nucleares que transformam a massa em energia através da fusão nuclear, a zona radiativa e a zona de convecção. O interior do Sol não é diretamente observável, já que a radiação é completamente absorvida (e reemitida) pelo plasma do interior solar, e o Sol em si mesmo é opaco à radiação electromagnética. Porém, da mesma maneira que a sismologia utiliza ondas geradas por terremotos para revelar o interior da Terra, a heliosismologia utiliza ondas de pressão (infravermelho) atravessando o interior do Sol para medir e visualizar o interior da estrutura solar.[37] Modelos de computador também são utilizados como instrumentos teóricos para investigar camadas mais profundas do Sol.[38]
Núcleo
Produção de energia
Diagrama da cadeia próton-próton, o ciclo de fusão nuclear que gera a maior parte da energia do Sol.
- 4 ¹H → 2 ²H + 2 e+ + 2 νe (4,0 MeV + 1,0 MeV)
- 2 ¹H + 2 ²H → 2 3He + 2 γ (5,5 MeV)
- 2 3He → 4He + 2 ¹H (12,9 MeV)
- 4 ¹H → 4He + 2 e+ + 2 νe + 2 γ (26,7 MeV)
A densidade de potência é de cerca de 194 µW/kg de matéria,[48] e, embora visto que a fusão ocorra no relativamente pequeno núcleo solar, a densidade da potência do plasma nesta região é 150 vezes maior.[49] Em comparação, o calor produzido pelo corpo humano é de 1,3 W/kg, cerca de 600 vezes maior do que no Sol, por unidade de massa.[50]
Mesmo tomando em consideração apenas o núcleo solar, com densidades 150 vezes maior do que a densidade média da estrela, o Sol produz relativamente pouca energia, a uma taxa de 0,272 W/m³. Surpreendentemente, essa potência é muito inferior àquela gerada por uma vela acesa.[nota 2] O uso de plasma na Terra com parâmetros similares ao do núcleo solar é imprático, se não impossível: mesmo uma modesta usina de 1 GW requereria cerca de 5 bilhões (5 mil milhões) de toneladas métricas de plasma.
A taxa de fusão nuclear depende muito da densidade e da temperatura do núcleo: uma taxa um pouco mais alta de fusão faz com que o núcleo aqueça, expandindo as camadas exteriores do Sol, e consequentemente, diminuindo a pressão gravitacional exercida pelas camadas externas e a taxa de fusão. Com o diminuimento da taxa de fusão, as camadas externas contraem, aumentando sua pressão contra o núcleo solar, o que novamente aumentará a taxa de fusão fazendo repetir-se o ciclo.[52][53]
Os fótons de alta energia (raios gamas) gerados pela fusão nuclear são absorvidos por núcleos presentes no plasma solar e re-emitidos novamente em uma direção aleatória, dessa vez com uma energia um pouco menor. Depois são novamente absorvidos e o ciclo se repete. Como consequência, a radiação gerada pela fusão nuclear no núcleo solar demora muito tempo para chegar à superfície. Estimativas do tempo de viagem variam entre 10 a 170 mil anos.[54]
Após passar pela camada de convecção até a superfície "transparente" da fotosfera, os fótons escapam como luz visível. Cada raio gama no núcleo solar é convertido em vários milhões de fótons visíveis antes de escaparem no espaço. Neutrinos também são gerados por fusão nuclear no núcleo, mas, ao contrário dos fótons, raramente interagem com matéria. A maior parte dos neutrinos produzidos acabam por escapar do Sol imediatamente. Por vários anos, medidas do número de neutrinos produzidos pelo Sol eram três vezes mais baixas do que o previsto. Este problema foi resolvido recentemente com a descoberta dos efeitos da oscilação de neutrinos. O Sol de fato produz o número de neutrinos previsto em teoria, mas detectores de neutrinos na Terra não detectavam dois terços deles porque os neutrinos mudavam de sabor.[55]
Zona de radiação
Entre a zona de radiação e a zona de convecção existe uma camada de transição chamada de tacoclina. Esta é uma região onde a mudança súbita de condições entre a rotação uniforme da zona radiativa e a rotação diferencial da zona de convecção resulta em grande tensão de cisalhamento — uma condição onde camadas horizontais sucessivas escorregam umas sobre as outras.[57] A moção do fluido na zona de convecção gradualmente desaparece do topo do tacoclina até a parte inferior desta camada, adquirindo as mesmas características calmas da zona de radiação. Acredita-se que um dínamo magnético dentro desta camada gera o campo magnético solar.[41]
Zona de convecção
As colunas térmicas na zona de convecção formam características físicas na superfície do Sol, na forma de grânulos solares e supergranulação. Tais grânulos são os topos de células de convecção, estas possuindo cerca de 1 000 km de diâmetro.
A convecção turbulenta desta parte do interior solar gera um pequeno dínamo magnético que produz pólos norte e sul magnéticos em toda a superfície do Sol.[41] As colunas térmicas são células de Bénard, e portanto, tendem a serem prismas hexagonais.[58]
Fotosfera
Imagem do satélite artificial Hinode, de 12 de janeiro de 2007, revelando a natureza filamentar do plasma conectando regiões de diferentes polaridades magnéticas.
A temperatura efetiva (a temperatura que um corpo negro do mesmo tamanho precisa ter para emitir a mesma potência) do Sol é de 5 777 K (5 502 oC).
Estima-se que a espessura da fotosfera meça algo entre dezenas a centenas de quilômetros, sendo um pouco menos opaca que o ar na atmosfera terrestre. Devido ao fato de que a parte superior da fotosfera é mais fria do que a parte inferior, uma imagem do Sol aparenta ser mais brilhante no centro do que nas laterais do disco solar, fenômeno conhecido como escurecimento de bordo.[59] O espectro de corpo negro da luz solar indica uma temperatura média de 5 775 K (ou 5 502 °C), misturada com linhas de absorção atômicas das camadas tênuas acima da fotosfera. A densidade de partículas da fotosfera é de ~1023 m−3, aproximadamente 1% da densidade de partículas da atmosfera terrestre ao nível do mar.[49][60][61] Nesta temperatura, a emissão de luz na fotosfera ocorre em todas as bandas do espectro luminoso, dando ao Sol uma cor branca, que aparenta ser amarela no céu terrestre devido à dispersão da luz na atmosfera terrestre, mais acentuada nos comprimentos de onda azul. A mesma dispersão causa a cor azul característica do céu terrestre.[18]
Durante os primeiros estudos do espectro óptico da fotosfera, algumas linhas de absorção encontradas não correspondiam a nenhum elemento químico encontrado na Terra. Em 1868, Norman Lockyer hipotetizou que estas linhas eram causadas por um elemento químico não descoberto, que Lockyer chamou de "hélio", em referência ao Deus grego Hélios. O Hélio seria isolado na Terra 25 anos mais tarde.[62]
Atmosfera
Durante um eclipse total do Sol, a coroa Solar pode ser vista a olho nu.
Temperatura (linha contínua) e densidade (linha tracejada) da atmosfera solar a partir da base da fotosfera.
A camada mais fria do Sol é a região de temperatura mínima, localizada 500 km acima da fotosfera, que possui uma temperatura de 4 100 K.[59] Esta parte do Sol é fria o suficiente para suportar moléculas simples como monóxido de carbono e água, estas que podem ser detectadas por seus espectros de absorção.[64]
Acima da camada de temperatura mínima localiza-se a cromosfera, camada que possui cerca de 2 000 km de espessura e é dominada por espectros de emissões e linhas de absorção.[59] O nome desta camada provém do grego "chroma", que significa "cor", porque a cromosfera é visível como um flash colorido no início e fim de um eclipse total do Sol.[49] A temperatura da cromosfera aumenta gradualmente com a altitude, chegando a até 20 000 K no topo.[59] No topo da cromosfera, hélio torna-se parcialmente ionizado.[65]
Acima da cromosfera localiza-se a zona de transição solar, uma camada fina com cerca de 200 km de espessura. Nela, a temperatura aumenta rapidamente de 20 000 K para níveis próximos a 1 000 000 K.[66] O aumento rápido da temperatura é facilitado pela ionização completa do hélio na região de transição, que diminui significantemente o resfriamento radiativo do plasma.[65] A região de transição não ocorre em uma altitude bem definida. Ao invés disso, forma um tipo de halo em torno de características da cromosfera, tais como espículas e filamentos solares, possuindo uma moção constante e caótica.[49] A região de transição não é facilmente visível da superfície da Terra, mas é facilmente observável do espaço por instrumentos sensíveis ao extremo ultravioleta do espectro eletromagnético.[67]
A coroa solar é a atmosfera estendida externa do Sol, que é muito maior em volume do que o Sol propriamente dito. A coroa expande continuamente no espaço, formando o vento solar, que preenche todo o interior do Sistema Solar.[68] A base da coroa, que localiza-se muito próxima da superfície solar, possui uma densidade de partículas muito baixa, cerca de 1015–1016 m−3 na base, diminuindo com a altitude.[65][nota 3] A temperatura média da coroa e do vento solar varia entre um milhão e dois milhões de kelvins. A temperatura nas regiões mais quentes alcança 8 a 20 milhões de Kelvins.[66] Atualmente, não existe uma teoria que explique por completo a causa das altas temperaturas da coroa, sendo este um dos maiores problemas da física solar.[69] Porém, sabe-se que parte do calor provém de reconexão magnética.[66][68]
Diagrama mostrando a estrutura da heliosfera.
Composição química
O Sol é composto primariamente dos elementos químicos hidrogênio e hélio; estes compõem 74,9% e 23,8%, respectivamente, da massa do Sol na fotosfera.[72] Todos os elementos mais pesados, chamados coletivamente de metais na astronomia, compõem menos de 2% da massa solar. Os elementos químicos mais abundantes são oxigênio (compondo cerca de 1% da massa do Sol), carbono (0,3%), néon (0,2%), e ferro (0,2%).[73]O Sol herdou sua composição química do meio interestelar do qual foi formado: o hidrogênio e o hélio foram produzidos na nucleossíntese do Big Bang, enquanto que os metais foram produzidos por nucleossíntese estelar em gerações de estrelas que completaram sua evolução estelar, e retornaram seus materiais para o meio interestelar antes da formação do Sol.[73] A composição química da fotosfera é normalmente considerada representativa da composição do Sistema Solar primordial.[74] Porém, desde que o Sol foi formado, o hélio e os metais presentes nas camadas externas gradualmente afundaram em direção ao centro. Portanto, a fotosfera presentemente contém um pouco menos de hélio e apenas 84% dos metais que o Sol protoestrelar tinha; este era composto de 71,1% hidrogênio, 27,4% hélio, e 1,5% metais, em massa.[72]
Fusão nuclear no núcleo do Sol modificou a composição química do interior solar. Atualmente, o núcleo do Sol é composto em 60% por hélio, com a abundância de metais não modificados. Visto que o interior do Sol é radiativo e não convectivo, o hélio e outros produtos gerados pela fusão nuclear não subiram para camadas superiores.[73]
As abundâncias dos metais descritas acima são tipicamente medidas utilizando espectroscopia da fotosfera do Sol, e de medidas da abundância destes metais em meteoritos que nunca foram aquecidos a temperaturas acima do ponto de fusão.[75] Acredita-se que estes meteoritos retenham a composição do Sol protoestelar, e portanto, não sejam afetados pelo afundamento dos elementos mais pesados.
Elementos ionizados do grupo 8
Durante a década de 1970, extensiva pesquisa foi realizada sobre as abundâncias dos elementos do grupo 8 no Sol.[76][77] Apesar disso, a determinação da abundância de certos elementos tais como cobalto e manganês fora difícil até 1978 por causa de suas estruturas hiper-finas.[76]A força vibracional de todos os elementos ionizados do grupo 8 foi produzida pela primeira vez durante a década de 1960,[78] e melhorias nas forças de oscilamento foram produzidas em 1976.[79] Em 1978, as abundâncias de elementos ionizados do grupo 8 foram produzidas.[76]
Relação entre massa fracionada do Sol e dos planetas
Vários autores consideraram a existência de uma relação de massa fracionada entre as composições isotópicas dos gases nobres do Sol e dos planetas,[80] tais como néon e xénon.[81] Acreditava-se que todo o Sol possuía a mesma composição da atmosfera solar, ao menos até 1983.[82]Em 1983, uma nova teoria argumentando que o fracionamento do Sol é o que causa a relação entre as composições isotópicas dos gases nobres dos planetas e do vento solar.[82]
Campo magnético
A corrente heliosférica difusa estende-se até as regiões exteriores do Sistema Solar, e resulta da influência do campo magnético do Sol em rotação no plasma no meio interplanetário.[83]
Toda a matéria no Sol está presente na forma de gás e plasma, devido à sua alta temperatura. Isto torna possível rotação diferencial, com o Sol girando mais rápido no seu equador (onde o período de rotação é de 25 dias) do que em latitudes mais altas (com o período de rotação solar sendo de 35 dias nos pólos solares). A rotação diferencial do Sol faz com que as linhas do campo magnético entortem com o tempo, provocando a erupção de anéis coronais em sua superfície, a formação de manchas solares e de proeminências solares, via reconexão magnética. Este entortamento gera o dínamo solar e o ciclo solar de atividade magnética, que repete-se a cada 11 anos, visto que o campo magnético solar reverte-se a cada 11 anos.[87][88]
O campo magnético solar estende-se bem além do Sol. O plasma magnetizado do vento solar transporta o campo magnético solar no espaço, formando o campo magnético interplanetário.[68] Visto que o plasma pode se mover apenas nas linhas do campo magnético, as linhas do campo magnético interplanetário inicialmente esticam-se radialmente do Sol. Uma camada fina de correntes difusas no plano equatorial solar existe pois campos acima e abaixo do equador solar possuem polaridades diferentes. Esta camada é chamada de corrente heliosférica difusa.[68] À medida que a distância do Sol aumenta, a rotação solar entorta as linhas do campo magnético e a corrente difusa, formando uma estrutura similar a uma espiral de Arquimedes, chamada de espiral de Parker.[68] O campo magnético interplanetário é muito mais forte do que o componente dipolar do campo magnético solar. Enquanto que a última possui 50 a 400 T na fotosfera, reduzindo com o cubo da distância para 0,1 T na órbita terrestre, o campo magnético interplanetário na órbita terrestre é 100 vezes maior, com cerca de 5 T.[89]
Ciclo solar
O ciclo solar 23 (entre 1996 e 2006), com a maior imagem sendo o Sol em 2001. Todas as imagens individuais do Sol foram tomadas pela SOHO.
Manchas solares
Variação do ciclo solar nos últimos 30 anos.
Número de manchas solares observadas nos últimos 250 anos, mostrando os ciclos solares, cada uma com aproximadamente 11 anos de duração.
O ciclo solar possui grande influência na meteorologia do espaço, e influencia significantemente o clima na Terra, visto que a luminosidade solar está diretamente relacionada à atividade magnética do Sol. Quando o Sol está no período de atividade mínima, costuma-se registrar temperaturas médias mais baixas do que o normal na Terra. Por outro lado, temperaturas médias mais altas do que o normal estão correlacionadas com ciclos solares mais longos que o geral. No século XVII, o ciclo solar aparentemente parou por completo por várias décadas, visto que poucas manchas solares foram observadas durante este período. A Europa experenciou temperaturas muito baixas durante este século, fenômeno que foi denominado mínimo de Maunder ou Pequena Idade do Gelo.[92] Períodos estendidos de atividade mínima mais antigos foram descobertos através da análise de anéis de árvores, também aparentemente coincidindo com temperaturas globais mais baixas do que o normal.[93]
Estudos de heliosismologia executados a partir de sondas espaciais permitiram observar certas "vibrações solares", cuja freqüência cresce com o aumento da atividade solar, acompanhando o ciclo de 11 anos de erupções.[94] A cada 22 anos existe a manifestação do chamado hemisfério dominador, além da movimentação das estruturas magnéticas em direção aos pólos, que resulta em dois ciclos de 18 anos com incremento da atividade geomagnética da Terra e da oscilação da temperatura do plasma ionosférico na estratosfera da atmosfera terrestre.
Possível ciclo a longo termo
Uma teoria recente argumenta que instabilidades magnéticas existentes no núcleo do Sol causariam flutuações com períodos de 41 000 ou 100 000 anos. Isto poderia explicar melhor as idades do gelo do que os ciclos de Milankovitch.[95][96]Evolução
O Sol formou-se cerca de 4,57 bilhões (4,567 mil milhões) de anos atrás quando uma nuvem molecular entrou em colapso.[97] Evolução estelar é medida em duas maneiras: através da presente idade da sequência principal do Sol, que é determinada através de modelagens computacionais de evolução estelar; e nucleocosmocronologia.[98] A idade medida através destes procedimentos está de acordo com a idade radiométrica do material mais antigo encontrado no Sistema Solar, que possui 4,567 bilhões (4,567 mil milhões) de anos.[99][100]O Sol está aproximadamente na metade da sequência principal, período onde o qual fusão nuclear fusiona hidrogênio em hélio. A cada segundo, mais de 4 milhões de toneladas de matéria são convertidas em energia dentro do centro solar, produzindo neutrinos e radiação solar. Nesta velocidade, o Sol converteu cerca de 100 massas terrestres de massa em energia, desde sua formação até o presente. O Sol ficará na sequência principal por cerca de 10 bilhões (10 mil milhões) de anos.[101]
Em cerca de 5 bilhões (5 mil milhões) de anos, o hidrogênio no núcleo solar esgotará. Quando isto ocorrer, o Sol entrará em contração devido à sua própria gravidade, elevando a temperatura do núcleo solar até 100 milhões de kelvins, suficiente para iniciar a fusão nuclear do hélio, produzindo carbono, entrando na fase do ramo gigante assimptótico.[33]
O destino da Terra é precário. Como uma gigante vermelha, o Sol terá um raio máximo maior de 250 UA, maior do que a órbita atual da Terra.[102] Porém, quando o Sol tornar-se uma gigante vermelha, a estrela terá perdido cerca de 30% de sua massa atual, devido à massa perdida no vento solar, com os planetas afastando-se gradualmente do Sol, à medida que o Sol perde massa. Este fator por si mesmo provavelmente seria o suficiente para permitir que a Terra não fosse engolida pelo Sol, visto que a Terra afastar-se-ia o suficiente da estrela, mas pesquisas recentes mostram que a Terra será engolida pelo Sol devido à forças de maré.[102][103]
Mesmo que a Terra não seja incinerada pelo Sol, a água do planeta evaporará, e a maior parte de sua atmosfera escapará para o espaço. De fato, o Sol gradualmente torna-se mais brilhante com o passar do tempo, mesmo na sequência principal (10% a cada 1 000 000 000 anos), com sua temperatura de superfície gradualmente aumentando com o tempo. O Sol foi no passado menos brilhante, sendo que no início possuía 75% da luminosidade atual, uma possível razão pela qual vida em terra firme somente existiu nos últimos 1 000 000 000 anos. Em outros 1 000 000 000 anos, o aumento da temperatura fará com que a superfície da Terra torne-se quente demais para possibilitar a existência de água líquida, e portanto, impossibilitará vida na Terra em sua forma atual.[102][104]
A fusão de hélio sustentará o Sol por cerca de 100 milhões de anos, quando então o hélio no núcleo solar esgotará. O Sol não possui massa o suficiente para converter carbono em oxigênio, e portanto, não explodirá como uma supernova. Ao invés disso, após o término da fusão de hélio, intensas pulsações térmicas farão com que o Sol ejete suas camadas exteriores, formando uma nebulosa planetária. O único objeto que permanecerá após a ejeção será o extremamente quente núcleo solar, que resfriará gradualmente, permanecendo como uma anã branca com metade da massa atual (com o diâmetro da Terra) por bilhões (mil milhões) de anos. Este cenário de evolução estelar é típico de estrelas de massa moderada e baixa.[105][106]
Luz solar
Geometria de um eclipse solar total.
A luz solar é indispensável para a manutenção de vida na Terra, sendo responsável pela manutenção de água no estado líquido, condição indispensável para permitir vida como se conhece, e, através de fotossíntese em certos organismos (utilizando água e dióxido de carbono), produz o oxigênio (O2) necessário para a manutenção da vida nos organismos dependentes deste elemento e compostos orgânicos mais complexos (como glucose) que são utilizados por tais organismos, bem como outros que alimentam-se dos primeiros. A energia solar também pode ser capturada através de células solares, para a produção de eletricidade ou efetuar outras tarefas úteis (como aquecimento). Mesmo combustíveis fósseis tais como petróleo foram produzidos via luz solar — a energia existente nestes combustíveis foi originalmente convertida de energia solar via fotossíntese, em um passado distante.[110]
Eclipses do Sol
Sistema planetário
Oito planetas orbitam em torno do Sol: Mercúrio, Vênus, Terra, Marte, Júpiter, Saturno, Urano e Neptuno. Os planetas podem ser classificados como sólidos ou gasosos, ou, mais especificamente, de acordo com suas características físico-químicas, com os planetas mais próximos do Sol sendo sólidos e densos, mas de relativa pouca massa; e os planetas mais afastados sendo gasosos massivos de baixa densidade.[112]
Plutão foi considerado desde sua descoberta em 1930 até 2006 como o nono planeta do Sistema Solar. Em 2006, a União Astronômica Internacional criou a classificação de planeta anão. Presentemente, o Sistema Solar possui cinco planetas anões: Plutão, Eris, Haumea, Makemake, e Ceres.[113] Todos são plutoides,[114] com exceção de Ceres, localizado no cinturão de asteroides. O número de planetas anões poderá crescer nos próximos anos na medida em que novos plutoides são descobertos.[115]
Os corpos menores pertencem a vários grupos de objetos. Entre Marte e Júpiter localiza-se o cinturão de asteroides, com asteroides troianos nas órbitas de Júpiter e Neptuno. Além da órbita de Neptuno localiza-se o cinturão de Kuiper. Entre 20 a 100 mil UA do Sol localiza-se a Nuvem de Oort, hipotetizada como a fonte de cometas do Sistema Solar.[116]
A massa de todos estes objetos constituem em conjunto apenas uma pequena porção da massa total do Sistema Solar (0,14%), com o Sol concentrando a maior parte da massa total do Sistema Solar (99,86%).[117] O espaço entre corpos celestes dentro do Sistema Solar não é vazio, sendo preenchido por plasma proveniente do vento solar, bem como poeira, gás e partículas elementares, que constituem o meio interplanetário.[112]
Movimento e localização dentro da Via Láctea
Localização do Sol na Via Láctea.
O ápice solar é a direção do Sol em sua órbita na Via Láctea. A direção geral da moção solar aponta para a estrela Vega, próxima à constelação Hércules, a um ângulo de cerca de 60 graus para a direção do centro galáctico. Para um observador em Alpha Centauri, o sistema estelar mais próximo do Sistema Solar, o Sol apareceria na constelação Cassiopéia.[124]
Acredita-se que a órbita do Sol em torno do centro da Via Láctea seja elíptica, com a adição de perturbações devido aos braços espirais galácticos e de distribuição não uniforme de massa na galáxia. Além disso, o Sol oscila para cima e para baixo, relativo ao plano galáctico, cerca de 2,7 vezes por órbita. Isto é similar ao funcionamento de um oscilador harmônico simples sem força de arrasto. Cientistas afirmaram que os eventos de passagem do Sistema Solar nos braços espirais de maior densidade muitas vezes coincide com eventos de extinção em massa na Terra, possivelmente devido a um aumento de eventos de impacto causado por distúrbios gravitacionais de estrelas próximas.[125] O Sistema Solar completa uma órbita em torno do centro da Via Láctea (um ano galáctico) a cada 225-250 milhões de anos.[126] com o Sol tendo completado entre 20 e 25 órbitas desde sua formação. A velocidade orbital do Sistema Solar em torno do centro da galáxia é de cerca de 251 km/s.[26] Nesta velocidade, o Sol toma cerca de 1,4 mil anos para percorrer um ano-luz, ou oito dias para percorrer 8 UA.[127]
A moção do Sol relativo ao baricentro do Sistema Solar é complicado por perturbações dos planetas. A cada séculos, esta moção alterna entre retrógrado e prógrado.[128]
Nenhum comentário:
Postar um comentário