Wikipedia

Resultados da pesquisa

4/01/2013

Luminosidade

Em astronomia, luminosidade é a quantidade de luz e outras formas de energia radiante que a estrela irradia por unidade de tempo. A luminosidade de uma estrela é determinada pelo raio e a temperatura superficial. Entretanto, muitas estrelas não irradiam um fluxo uniforme por toda a sua superfície. A estrela Vega, por exemplo, de rápida rotação, tem um fluxo de energia maior nos seus polos do que ao longo do seu equador.[115]
Regiões da superfície com temperatura e luminosidade menores do que a média são conhecidas como manchas estelares. As pequenas estrelas anãs como o Sol geralmente apresentam discos essencialmente sem acidentes, com apenas pequenas manchas estelares. As estrelas gigantes têm manchas estelares muito maiores e muito mais óbvias[116] e também exibem forte escurecimento de bordo, isto é, o brilho diminui na direção da borda do disco estelar.[117] Anãs vermelhas eruptivas como a UV Ceti podem também possuir manchas estelares importantes.[118]

Magnitude

O brilho aparente de uma estrela é medido pela sua magnitude aparente, que é o brilho da estrela considerando a luminosidade, a distância da Terra e a alteração da luz da estrela quando passa pela atmosfera da Terra. A magnitude intrínseca ou absoluta está diretamente relacionada à luminosidade da estrela e corresponde à magnitude aparente que a estrela teria se sua distância para a Terra fosse de 10 parsec (32,6 anos-luz).
Número de estrelas mais brilhantes que a magnitude
Magnitude
aparente
Número
de estrelas[119]
0 4
1 15
2 48
3 171
4 513
5 1.602
6 4.800
7 14.000
As magnitudes aparente e absoluta são grandezas logarítmicas: uma diferença de uma unidade na magnitude corresponde a uma variação no brilho de cerca de 2,5 vezes[120] (a raiz quinta de 100 ou aproximadamente 2,512). Isto significa que uma estrela de primeira grandeza (+1,00) é cerca de 2,5 vezes mais brilhante que uma de segunda grandeza (+2,00) e aproximadamente 100 vezes mais brilhante que uma estrela de sexta grandeza (+6,00). As estrelas mais fracas visíveis a olho nu em boas condições de visibilidade são as de magnitude +6.
Tanto nas escalas de magnitude aparente quanto absoluta, quanto menor o número da magnitude, mais brilhante é a estrela. As estrelas mais brilhantes, em ambas as escalas, têm números de magnitude negativos. A diferença de brilho entre duas estrelas (ΔL) é calculada pela subtração entre o número de magnitude da estrela mais brilhante (mb) e a mais fraca (mf' ), depois usando-se a diferença como o expoente do número base 2,512. Ou seja:
 \Delta{m} = m_\mathrm{f} - m_\mathrm{b}
2.512^{\Delta{m}} = \Delta{L}
Em relação tanto à luminosidade quanto à distância da Terra, as magnitudes absoluta (M) e aparente (m) não são equivalentes para uma estrela individual;[120] por exemplo, a brilhante estrela Sirius tem uma magnitude aparente de -1,44, mas uma magnitude absoluta de +1,41.
O Sol tem uma magnitude aparente de -26,7, mas sua magnitude absoluta é apenas +4,83. Sirius, a estrela mais brilhante no céu noturno vista da Terra, é aproximadamente 23 vezes mais luminosa do que o Sol, enquanto Canopus, a segunda estrela mais brilhante do céu noturno, com uma magnitude de -5,53, é aproximadamente 14.000 vezes mais luminosa do que o Sol. Apesar de Canopus ser muito mais luminosa do que Sirius, esta parece mais brilhante, porque está a somente 8,6 anos-luz da Terra, enquanto Canopus está muito mais distante, a 310 anos-luz.
Desde 2006, a estrela com a maior magnitude absoluta conhecida é a LBV 1806-20, com magnitude de -14,2. Esta estrela é pelo menos cinco milhões de vezes mais luminosa do que o Sol.[121] As estrelas menos luminosas atualmente conhecidas estão localizadas no aglomerado NGC 6397. As anãs vermelhas mais fracas no aglomerado têm magnitude 26, enquanto uma anã branca de magnitude 28 foi também descoberta. Essas estrelas fracas são tão luminosas quanto uma vela de aniversário na Lua, quando vista da Terra.[122]

Classificação

Faixas de Temperatura Superficial
para Diferentes Classes Estelares[123]
Classe Temperatura Estrela tipo
O 33.000 K ou mais Zeta Ophiuchi
B 10.500–30.000 K Rigel
A 7.500–10.000 K Altair
F 6.000–7.200 K Procyon A
G 5.500–6.000 K Sol
K 4.000–5.250 K Epsilon Indi
M 2.600–3.850 K Proxima Centauri
A classificação atual das estrelas se originou no início do século XX, quando as estrelas foram classificadas de A a Q com base na força da linha de hidrogênio.[124] Não se sabia na época que a maior influência nessa força era a temperatura; a força da linha de hidrogênio atinge um máximo a cerca de 9000 K e é mais fraca a temperaturas menores e maiores. Quando a classificação foi reordenada pela temperatura, ela ficou mais parecida com o esquema moderno.[125]
Há classificações diferentes de uma só letra para estrelas de acordo com os seus espectros, variando do tipo O, que são as muito quentes, até M, tão frias que podem se formar moléculas em suas atmosferas. As principais classificações em ordem decrescente de temperatura superficial são: O, B, A, F, G, K e M. Alguns tipos espectrais raros têm classificações especiais. As mais comuns desses tipos são L e T, que indicam as estrelas mais frias de pequena massa e as anãs marrons. Cada letra possui 10 subdivisões, numeradas de 0 a 9, em ordem decrescente de temperatura. Entretanto, este sistema se rompe a temperaturas extremamente altas: podem não existir estrelas classes O0 e O1.[126]
Além disso, as estrelas podem ser classificadas pelos efeitos da luminosidade encontrados em suas linhas espectrais, que correspondem ao seu tamanho espacial e são determinados pela gravidade superficial. Elas variam de 0 (hipergigantes) a V (anãs da sequência principal), passando pela III (gigantes). Alguns autores acrescentam a classe VII (anãs brancas). A maior parte das estrelas pertencem à sequência principal, que consiste das estrelas normais que queimam hidrogênio. Elas caem numa estreita banda diagonal quando representadas em gráfico considerando sua magnitude absoluta e o tipo espectral.[126] O Sol é uma anã amarela G2V da sequência principal, de temperatura intermediária e tamanho comum.
Nomenclaturas adicionais, na forma de letras minúsculas, podem se seguir ao tipo espectral, para indicar características peculiares do espectro. Por exemplo, um "e" pode indicar a presença de linhas de emissão, "m" representa níveis excepcionalmente altos de metais e "var" pode significar variações no tipo espectral.[126]
As estrelas anãs brancas têm a sua própria classe, que começa com a letra D, depois subdividida nas classes DA, DB, DC, DO, DZ e DQ, dependendo dos tipos de linhas predominantes encontradas no espectro. Esta denominação é seguida por um valor numérico que indica o índice de temperatura.[127]

Estrelas variáveis

A aparência assimétrica de Mira, uma estrela variável oscilante. ‘’Imagem NASA do telescópio espacial Hubble’’
Estrelas variáveis têm mudanças periódicas ou randômicas na luminosidade devido a propriedades intrínsecas ou extrínsecas. Das estrelas intrinsecamente variáveis, os tipos principais podem ser subdivididos em três grupos principais.
Durante a sua evolução, algumas estrelas passam por fases em que podem se tornar variáveis pulsantes. Elas variam com o tempo em raio e luminosidade, expandindo-se e contraindo-se em períodos que variam de minutos a anos, dependendo do tamanho da estrela. Esta categoria inclui as Cefeidas e estrelas similares, bem como variáveis de longo ciclo, como Mira.[128]
Variáveis eruptivas são estrelas que passam por aumentos súbitos da luminosidade devido a erupções ou eventos de ejeção de massa.[128] Este grupo inclui as protoestrelas, estrelas de Wolf-Rayet e estrelas eruptivas, bem como estrelas gigantes e supergigantes.
As variáveis cataclísmicas ou explosivas passam por mudanças dramáticas em suas propriedades. Este grupo inclui as novas e supernovas. Um sistema binário de estrelas que inclui uma anã branca próxima pode produzir alguns tipos dessas explosões estelares espetaculares, incluindo a nova e a supernova Tipo 1a.[4] A explosão é criada quando a anã branca acreta hidrogênio proveniente da estrela companheira, acrescentando massa até que o hidrogênio se funde.[129] Algumas novas são recorrentes, apresentando explosões periódicas de amplitude moderada.[128]
As estrelas também podem variar em luminosidade por causa de fatores extrínsecos, como eclipses de binárias e estrelas rotativas que produzem manchas estelares extremas.[128] Um exemplo notável de um eclipse de binária é Algol, que regularmente varia em magnitude de 2,3 para 3,5, num período de 2,87 dias.

Nenhum comentário: