Até fins do século XIX, era considerado a menor porção em que se poderia dividir a matéria. Mas nas duas últimas décadas daquele século, as descobertas do próton e do elétron revelaram o equívoco dessa ideia. Posteriormente, o reconhecimento do nêutron e de outras partículas subatômicas reforçou a necessidade de revisão do conceito de átomo.[3]
|
|
História
Os atomistas na antiga Grécia
Os atomistas, encabeçados por Demócrito e pelo seu professor Leucipo, pensavam que a matéria era constítuida por partículas minúsculas e invisíveis, os átomos (A-tomo),"Sem divisão". Achavam eles que se dividíssemos e voltássemos a dividir, alguma vez o processo havia de parar.Para Demócrito, a grande variedade de materiais na natureza provinha dos movimentos dos diferentes tipos de átomos que, ao se chocarem, formavam conjuntos maiores gerando diferentes corpos com características próprias. Algumas ideias de Demócrito sobre os átomos:
- Água: formada por átomos ligeiramente esféricos (a água escoa facilmente).
- Terra: formada por átomos cúbicos (a terra é estável e sólida).
- Ar: formado por átomos em movimento turbilhonantes (o ar se movimenta - ventos).
- Fogo: formado por átomos pontiagudos (o fogo fere).
- Alma: formada pelos átomos mais lisos, mais delicados e mais ativos que existem.
- Respiração: era considerada troca de átomos, em que átomos novos substituem átomos usados.
- Sono: desprendimento de pequeno número de átomos do corpo.
- Coma: desprendimento de médio número de átomos do corpo.
- Morte: desprendimento de todos os átomos do corpo e da alma.
Mas, ainda assim, a teoria mais defendida era a de Aristóteles que acreditava que a matéria seria constituída de elementos da natureza como fogo, água, terra e ar que misturados em diferentes proporções, resultariam em propriedades físico-químicas diferentes.
Evolução histórica da ideia de átomo
Modelo atômico de Dalton
O modelo atômico de Thomson
Thomson propôs que o átomo era, portanto, divisível,[4] em partículas carregadas positiva e negativamente, contrariando o modelo indivisível de átomo proposto por Dalton (e por atomistas na Antiga Grécia). O átomo consistiria de vários elétrons incrustados e embebidos em uma grande partícula positiva, como passas em um pudim.[4] O modelo atômico do "pudim com passas" permaneceu em voga até a descoberta do núcleo atômico por Ernest Rutherford.
O modelo atômico de Rutherford
A partir dessas observações, Rutherford chegou às seguintes conclusões:
- No átomo existem espaços vazios; a maioria das partículas o atravessava sem sofrer nenhum desvio.
- No centro do átomo existe um núcleo muito pequeno e denso; algumas partículas alfa colidiam com esse núcleo e voltavam, sem atravessar a lâmina.
- O núcleo tem carga elétrica positiva; as partículas alfa que passavam perto dele eram repelidas e, por isso, sofriam desvio em sua trajetória.
Rutherford demonstrou, ainda, que praticamente toda a massa do átomo fica concentrada na pequena região do núcleo.
Dois anos depois de Rutherford ter criado o seu modelo, o cientista dinamarquês Niels Bohr o completou, criando o que hoje é chamado modelo planetário. Para Bohr, os elétrons giravam em órbitas circulares, ao redor do núcleo. Depois desses, novos estudos foram feitos e novos modelos atômicos foram criados. O modelo que representa o átomo como tendo uma parte central chamado núcleo, contendo prótons e nêutrons, serve para explicar um grande número de observações sobre os materiais.
O modelo atômico de Niels Bohr e a mecânica quântica
Bohr, que trabalhava com Rutherford, propôs o seguinte modelo: o elétron orbitaria o núcleo em órbitas estacionárias, sem perder energia. Entre duas órbitas, temos as zonas proibidas de energia, pois só é permitido que o elétron esteja em uma delas. Ao receber um quantum, o elétron salta de órbita, não num movimento contínuo, passando pela área entre as órbitas (daí o nome zona proibida), mas simplesmente desaparecendo de uma órbita e reaparecendo com a quantidade exata de energia. Se um pacote com energia insuficiente para mandar o elétron para órbitas superiores encontrá-lo, nada ocorre. Mas se um fóton com a energia exata para que ele salte para órbitas superiores, certamente o fará, depois, devolvendo a energia absorvida em forma de ondas eletromagnéticas.
Estrutura
O diâmetro da eletrosfera de um átomo é de 10,000 a 100,000 vezes maior que o diâmetro de seu núcleo, e sua estrutura interna pode ser considerada , para efeitos práticos, oca; pois para encher todo este espaço vazio de prótons e nêutrons (ou núcleos) necessitaríamos de um bilhão de milhões de núcleos…
O átomo de hidrogênio é constituído por um só próton com um só elétron girando ao seu redor. O hidrogênio é o único elemento cujo átomo pode não possuir nêutrons.
O elétron e o próton possuem, respectivamente, carga negativa e carga positiva, porém não a mesma massa.[6] O próton é 1836,11 vezes mais maciço que o elétron. Usando, como exemplo hipotético, um átomo de vinte prótons e vinte nêutrons em seu núcleo, e este estando em equilíbrio eletrodinâmico, terá vinte elétrons orbitando em suas camadas exteriores. Sua carga elétrica estará em perfeito equilíbrio eletrodinâmico, porém 99,97% de sua massa encontrar-se-á no núcleo. Apesar do núcleo conter praticamente toda a massa, seu volume em relação ao tamanho do átomo e de seus orbitais é minúsculo. O núcleo atômico mede em torno de
Principais características das partículas fundamentais
Massa
Determinar a massa de um corpo significa comparar a massa deste corpo com outra tomada como padrão.A unidade de massa tomada como padrão é o grama (g). Mas nós muitas vezes utilizamos o Quilograma, que equivale a 1000 vezes a massa de 1 g. Um exemplo disso é quando se diz que a massa de uma pessoa é 45 vezes a massa correspondente à do quilograma.
Ou ainda: 45 kg = 45 x 1000 g = 45 000 g
Como as partículas que constituem o átomo são extremamente pequenas, uma unidade especial teve que ser criada para facilitar a determinação de suas massas. Essa unidade, denominada unidade de massa atômica, é representada pela letra u.
1 u equivale a aproximadamente 1,66 · 10−27 kg (veja artigo Unidade de massa atômica).
As massas do próton e do nêutron são praticamente iguais: medem cerca de 1 unidade de massa atômica. A massa do elétron é 1836 vezes menor que a do próton: essa massa é desprezível, porém é errado dizer que o elétron é desprovido dela.
Carga elétrica
O elétron é uma partícula dotada de carga elétrica negativa. A sua carga, que foi determinada experimentalmente em 1908, equivale a uma unidade de carga elétrica (1 ue). A carga do próton é igual à do elétron, só que de sinal contrário. O próton tem carga elétrica positiva. O nêutron não possui carga elétrica, como o seu nome indica, ele é neutro.Interação atômica
Se tivermos dois átomos hipotéticos, cuja carga elétrica seja neutra, presume-se que estes não se afetarão mutuamente por causa da neutralidade da força electromagnética entre si.A distribuição de cargas no átomo se dá de forma diversa. A carga negativa é externa, a carga positiva é interna, isto ocorre porque os elétrons orbitam o núcleo. Quando aproximamos dois átomos, mesmo estando em perfeita neutralidade interna, estes se repelem, se desviam ou ricocheteiam.
Exemplo típico ocorre no elemento hélio (He) onde seus átomos estão em eterno movimento de mútuo ricochete. Em temperatura ambiente, o gás hélio tem no movimento de seus átomos um rápido ricochete. Ao diminuir a temperatura, o movimento oscilatório diminui, o volume fica menor e a densidade aumenta. Chegaremos teoricamente num ponto em que o movimento de ricochete diminuirá tanto que não se poderá mais retirar energia deste. A este nível térmico, damos o nome de zero absoluto, este é –273,15 °C.
Força de Van der Waals
A carga eletrônica não se distribui de maneira uniforme, algumas partes da superfície atômica são menos negativas que outras. Em função disto, a carga positiva que se encontra no interior do átomo infiltrar-se-á pelas áreas menos negativas externas, por isso haverá uma débil atração eletrostática entre os dois átomos chamada de força de Van der Waals.Em baixíssima temperatura, os átomos de hélio movem-se muito lentamente, seu ricochete diminui a tal grau que é insuficiente para vencer as forças de Van der Waals, como o átomo de hélio é altamente simétrico, por este motivo as forças atuantes neste elemento são muito fracas. A contração do hélio ocorre e este acaba por se liquefazer a 4,3 graus acima do zero absoluto.
Nos demais gases presentes na natureza sua distribuição de cargas é menos simétrica que no hélio, as forças de Van der Waals são maiores ocasionando uma liquefação em temperaturas maiores.
Atração atômica
Nas regiões externas dos átomos, a distribuição eletrônica se dá em camadas, sua estrutura apresenta a estabilidade máxima se estas estiverem completas. Com exceção do hélio e outros elementos com estabilidade e simetria semelhante, geralmente a camada mais exterior do átomo é incompleta, ou podem possuir excesso de elétrons. Em função disto pode haver a transferência de um ou dois elétrons do átomo em que estão em excesso, para o átomo em que estão em falta, deixando as camadas externas de ambos em equilíbrio.O átomo que recebe elétrons ganha carga negativa, e o que perdeu não equilibra totalmente sua carga nucléica, positiva. Ocorre então o aglutinamento atômico.
Existe ainda o caso de dois átomos colidirem. Ocorrendo, há o compartilhamento eletrônico entre ambos que passam a ter suas camadas mais externas completas desde que permaneçam em contato.
Elementos químicos conhecidos
É importante ter em mente que, átomo, é uma entidade elementar. O conjunto de átomos que apresentam o mesmo número atômico (Z) é chamado de elemento químico. Desta forma, na Tabela Periódica dos Elementos, a ideia de entidade elementar é substituída pela ideia dÉ possível ter aproximadamente 10 sextilhões de átomos em uma casa (o algarismo 1 e 22 zeros à direita
Ex.: Ao procurar pelo Carbono na Tabela Periódica, você deve saber que está procurando pelo Elemento Carbono e não pelo átomo de Carbono.
A Tabela Periódica dos Elementos
| Grupo # | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | ||
| Período | ||||||||||||||||||||
| 1 | 1 H | 2 He | ||||||||||||||||||
| 2 | 3 Li | 4 Be | 5 B | 6 C | 7 N | 8 O | 9 F | 10 Ne | ||||||||||||
| 3 | 11 Na | 12 Mg | 13 Al | 14 Si | 15 P | 16 S | 17 Cl | 18 Ar | ||||||||||||
| 4 | 19 K | 20 Ca | 21 Sc | 22 Ti | 23 V | 24 Cr | 25 Mn | 26 Fe | 27 Co | 28 Ni | 29 Cu | 30 Zn | 31 Ga | 32 Ge | 33 As | 34 Se | 35 Br | 36 Kr | ||
| 5 | 37 Rb | 38 Sr | 39 Y | 40 Zr | 41 Nb | 42 Mo | 43 Tc | 44 Ru | 45 Rh | 46 Pd | 47 Ag | 48 Cd | 49 In | 50 Sn | 51 Sb | 52 Te | 53 I | 54 Xe | ||
| 6 | 55 Cs | 56 Ba | * | 72 Hf | 73 Ta | 74 W | 75 Re | 76 Os | 77 Ir | 78 Pt | 79 Au | 80 Hg | 81 Tl | 82 Pb | 83 Bi | 84 Po | 85 At | 86 Rn | ||
| 7 | 87 Fr | 88 Ra | ** | 104 Rf | 105 Db | 106 Sg | 107 Bh | 108 Hs | 109 Mt | 110 Ds | 111 Rg | 112 Cn | 113 Uut | 114 Fl | 115 Uup | 116 Lv | (117) (Uus) | 118 Uuo | ||
| * Lantanídios | 57 La | 58 Ce | 59 Pr | 60 Nd | 61 Pm | 62 Sm | 63 Eu | 64 Gd | 65 Tb | 66 Dy | 67 Ho | 68 Er | 69 Tm | 70 Yb | 71 Lu | |||||
| ** Actinídios | 89 Ac | 90 Th | 91 Pa | 92 U | 93 Np | 94 Pu | 95 Am | 96 Cm | 97 Bk | 98 Cf | 99 Es | 100 Fm | 101 Md | 102 No | 103 Lr | |||||
Nenhum comentário:
Postar um comentário